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USING NEURAL NETWORKS FOR SENSOR VALIDATION

Duane L. Mattern and Link C. Jaw
Scientific Monitoring, Inc., Tempe, Arizona

Ten-Huei Guo
NASA Lewis Research Center, Cleveland, Ohio

Ronald Graham and William McCoy
Allison Engine Company, Indianapolis, Indiana

Abstract

This paper presents the results of applying two
different types of neural networks in two different
approaches to the sensor validation problem.  The first
approach uses a functional approximation neural
network as part of a nonlinear observer in a model-
based approach to analytical redundancy.  The second
approach uses an auto-associative neural network to
perform nonlinear principal component analysis on a
set of redundant sensors to provide an estimate for a
single failed sensor.  The approaches are demonstrated
using a nonlinear simulation of a turbofan engine.  The
fault detection and sensor estimation results are
presented and the training of the auto-associative neural
network to provide sensor estimates is discussed.

Nomenclature

AANN Auto-Associative Neural Network
ALT Aircraft altitude, (feet)
CVGFB Compressor Variable Geometry FeedBack
CVGMA CVG MilliAmpere command signal
DPBLD Delta Pressure between the compressor

discharge and the bypass duct
DTAMB Temperature variation from standard day

temperature, (deg F)
FADEC Full Authority Digital Engine Control
FDIA Fault Detection, Isolation, & Accommodation
ITT Interstage Turbine Temperature (deg F)
MMVFB Main Metering Valve position FeedBack
P25 Low pressure compressor inlet pressure
P3 Compressor discharge pressure, burner inlet
PLA Power Lever Angle (thrust demand)
T25 Compressor inlet temperature (deg F)
T3 Temperature at burner inlet, (deg R)
WF Fuel flow (lbm/hour)
WFMA Fuel Flow MilliAmpere command signal
XM Aircraft Mach number
XNL Fan rotor speed, (rpm)
XNH Core rotor speed, (rpm)

Introduction

Safety and reliability are key design issues in
turbine engines.  Methods such as analytical
redundancy for handling online faults can be used to
increase an aircraft’s reliability. Analytical redundancy
has been demonstrated on a turbofan engine in
reference [1].  This approach used an online nonlinear
model of an engine to provide estimates for failed
sensors.  The model was tuned to closely match the
steady state and dynamic response of the actual engine.
This demonstration required a relatively high fidelity
and highly tuned real-time engine model.  In reference
[2] a bank of Kalman filters was used to provide
probabilistically weighted parameter estimates of
measurements.  This approach required a dither to
disturb the system from a quiescent state in order to
identify the system online.  As an alternative, an auto-
associative neural network was used for sensor
validation of a rocket engine in reference [3].  This
reference indicates that the neural network estimates of
the sensor values could be used to replace failed sensor
values in a feedback control system.  The work
presented here is a continuation of the work in
reference [4] and is based on the work in [1,3,5].

In the following, the sensor validation problem is
introduced and two approaches to the problem are
presented: a model-based approach using a nonlinear
observer, and an auto-associative neural network.  The
nonlinear observer uses neural networks to model the
variation of the system with the operating point.  The
auto-associative neural network (AANN) approach is
trained to be able to estimate a variable from a set of
analytically redundant measurements when the sensor
corresponding to that variable is faulty.  The AANN
provides a nonlinear principal component analysis and
data dimensionality reduction via the funneling
structure of the neural network.  These two approaches
are demonstrated on a model of a turbofan engine.
Results are presented showing the overall system
response during simulated sensor faults.  The difficulty
in training the AANN to provide estimates when
provided erroneous information is also discussed.

_____________________
“This paper is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.”
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The Sensor Validation Problem

While we will apply the approaches in this paper to
nonlinear systems, we will use the following linear
system to illustrate the concept of sensor validation:

�x = +Ax Bu (1)
y = Cx (2)

x is the system state vector, u is the system input vector,
and y is the system output vector.  A, B, and C are
system matrices of appropriate dimension.  The “m”
outputs or measurements, y, are a linear function of the
“n” state variables, x.  Assuming that the A,B, and C
matrices include models of the actuators and sensors,
then y contains the sensed outputs used by the control
system to generate the actuator commands, u.  The
sensor validation problem can be posed by the
following three questions:

1)  In a real physical system where hardware failures
can and do occur, how does one detect when the
information provided to the control system through
the measurement vector, y, is incorrect?

2)  Once it is known that something is wrong with the
information presented in y, how does one isolate
the source of the problem?

3)  Once it is known where the problem is, (which
sensor has failed), how does one accommodate the
problem?

While faults occur in devices other than the sensors, (a
component fault for example), the sensors must be
validated first, prior to addressing any system
components, since all information is obtained through
the sensors.  We are concerned only with sensor
validation in this paper.  The three steps to the sensor
validation are Fault Detection, Isolation, and
Accommodation (FDIA).

Figure 1 Block Diagram of Model-Based
Approach to Sensor Validation

A Model-Based Approach to Sensor Validation

One approach to sensor validation is to include an
onboard model of the system as part of a real-time
diagnostics system.  In this approach  the output of the
model is used to validate the sensed information.  The
absolute value of the difference between the model
outputs, �y , and the real system measurements, y, is the

error, e, which is fed back to the threshold scheme as
shown in Figure 1.  With a model-based method the
violation of a single threshold isolates the fault to a
single measurement.  Then the estimated value can be
used in place of the measured value.  The onboard
model is the heart of the system.

An onboard model was used in references [1,6,7].
In reference [6], a piecewise linear model of an engine
is used in conjunction with a Kalman filter to provide
an estimate of engine damage.  Reference [7] used an
online model as part of a control system.  The main
issue in reference [7] is the ability to provide estimates
of unmeasurable variables, thrust and stall margin, for
two new control modes.  Reference [8] used functional
approximation neural networks to schedule the control
variables used in a full envelope control design for a
simulation of the J-85 turbojet engine.

There are two main issues to be addressed when
using an online model.  The first is accuracy.  When
dealing with a real manufactured product, there are
variations from product to product because of
manufacturing tolerances.  There are also changes
associated with aging, and wear and tear in engines that
are in service for extended periods.  These engine-to-
engine variations complicate the fault detection method
using thresholds.  Attempts to take these deviations into
account by online identification and adaptation
contribute to the second issue: computational overhead.
As in any mass produced product, cost is a
consideration and the extra computational overhead of
an online model or model and adaptation scheme can
easily double the computations required.  This also
greatly contributes to the complexity of the software
checkout and validation task.

An AANN Approach to Sensor Validation

The second method, the Auto-Associative Neural
Network (AANN) approach to sensor validation, can be
used when the information in the measurements is
analytically redundant in the sense that if one
measurement is lost, it can be replaced with an estimate
from the remaining valid sensors.  For the system
described by equations (1,2), consider the case with m
sensors such that m is greater than the size of the state

SystemController

Model

Thresholding
and Sensor
Validation

cmds u y

e

y

measurements

y or estimates
as required +
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vector, n (m>n).  An estimate of the state vector can be
made from a subset of the outputs, ys, as long as the
state vector is observable from the subset of outputs, as
follows in equation (3):

� ( )x C C C ys
T

s s
T

s= −1 (3)

Cs contains the rows of C corresponding to ys.  Note

that in going from ys to �x  there is a reduction in the
dimension of the data.  This state estimate can be used
to estimate the full output, �y :

� � ( )[ ]y Cx C C C C ys
T

s s
T

s= = −1 (4)

(Note: Superscript T indicates a matrix transpose)

If a non-zero direct feed-through term, D, appears in
equation (2), it would read: y=Cx+Du. In this case it is
possible to create a fictitious measurement y* that can
be constructed as y*=y-Du, so the above technique is
still valid since u is known.  The point to be made using
equation (4) is that the subset of redundant sensor
measurements can be used to estimate any missing
measurements as long as the state is observable from
the remaining subset of valid sensors.

However, in comparison, a Kalman filter provides
better noise filtering and excellent dynamic estimates of
the outputs of a linear system.  For nonlinear systems,
the extended Kalman filter can be used, but it imposes a
much greater computational burden because of the
complexities involved with representing a nonlinear
system with a family of piecewise linear models.  An
auto-associative neural networks can be used to extend
the functionality of equation (4) to nonlinear systems.
The reduction of the data dimension going from ys to �x
can be thought of as a principal component analysis.
The structure of the auto-associative neural network
used for the nonlinear system considered here
essentially resolves the principal components which are
nonlinear functions of the measurements.  These
principal components are then used to estimate all of
the sensed variables.

inputs outputs
1

2

33

2

1

Mapping
layer

De-mapping
layer

Bottle-neck
layer

Figure 2 Structure of a Four Layer (Matlab notation)
3-6-1-6-3 Auto-Associative Neural Network

Auto-Associative Neural Networks (AANN)
An AANN is a feedforward network architecture with
outputs which reproduce the network inputs.  The
architecture used here consists of two halves, the
mapping layer (on the left in Figure 2) and the de-
mapping layer.  These halves are interconnected
through the bottle-neck layer.  The mapping layer
compresses the data into a reduced order representation,
eliminating redundancies and extracting the key
features (principal components) in the data.  The
dimensionality reduction characteristics of this
architecture are discussed in [5].  The de-mapping layer
recovers the encoded information from the principal
components.

The minimum number of nodes in the bottle-neck
layer that will provide sufficient information for data
recovery represents the degree of freedom of the data
system.  In the sense of a linear system, the bottle-neck
layer must contain at least n nodes, were n is the size of
a non-redundant state vector, (a minimal
representation).  The observability requirement still
holds for nonlinear systems.

The AANN is trained in two steps.  The first step
trains the entire network using valid data.  This requires
the selection of the number of nodes in the various
layers.  The size of the bottle-neck layer is critical to
obtain the desired effect of eliminating the
redundancies in the measurements.  The second step
involves the modification of the training set to include
false data in the sense of faulty measurements.  The
network is then retrained with a data set that includes
erroneous information in order to learn how to filter the
false information.  There are various approaches to this
second step, some of which include freezing specific
weights within the AANN.  We’ll discuss two different
approaches to this second training step next.

AANN Fault Training Approach 1  The first
approach looks at the outputs of the bottle-neck layer as
the weighted combination of the inputs.  If one of the
inputs is faulty, this fault will have a reduced effect on
the bottle-neck layer because it is only one component
of many data inputs.  As a simple example, consider the
case where this network structure is used for three
measurements of the same temperature and the
bottleneck layer is just one node.  Then the mapping
layer performs a weighted averaging of these
temperature measurements.  Faulty information in one
sensor is then reduced to 33% of the original value
because there are a total of three measurements used in
the average calculation.  Thus the bottleneck layer
performs a weighted averaging.
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Figure 3  Functional Map of Logic
Training Approach 2

AANN Fault Training Approach 2  The second
approach to retraining the mapping layer attempts to
train the mapping layer to learn threshold logic [5].
Consider the previous example of three temperature
measurements, T1, T2, T3.  If T1 does not agree with the
average of the other two temperatures, within some
threshold (bounded by TL and TH in Figure 3), then the
contribution of T1 to the estimate of the temperature
would be zero.  We assume that T2 and T3 fall within
some acceptable bounds for this example. Without T1,
the temperature estimate would be made from the
average of T2 and T3, (T2+T3)/2.  This voting logic is
represented by a functional map as shown in Figure 3.
The full functional map for this example would be four
dimensional and has sharp contours associated with it.
A neural network can be trained to approximate this
functional map, but the map surface is complex and the
training is tedious.  Reference [5] discusses this method
for training an AANN.  The key advantage to this
approach is that it allows the detection, isolation, and
accommodation to be accomplished in one step.  The
key drawback of this approach is that the training is not
trivial and a simple example as this sometimes is much
easier to be coded in a standard software language.

In summary, the AANN approach to sensor
validation trains a neural network to learn the
relationships between a set of redundant sensors such
that if one sensor is bad an estimate for that sensor can
be obtained from the remaining valid sensors.  Note
that the neural network constitutes a model of a portion
of the engine and as such it has the same accuracy,
updating, and computational issues mentioned
previously for more conventional models.

Example Using a Turbofan Engine Model

Examples of the two approaches to sensor
validation are demonstrated using a nonlinear model of
a turbofan engine consisting of the engine and control
system (FADEC).  The external variables are PLA,
ALT, DTAMB, and XM.  PLA is a pilot command
input whereas ALT, DTAMB, and XM are considered
external system inputs due to ambient flight conditions.
The controller feedback variables are XNL, XNH, T25,
ITT, MMVFB, and CVGFB.  XNL, XNH, T25 and ITT
are engine outputs whereas MMVFB and CVGFB are
the actuator feedbacks of the fuel flow main metering
valve and the compressor variable geometry position
respectively.  We also consider the additional
measurements P25, P3, T3, WF, DPBLD which are
used for the analytically redundant information needed
in the AANN approach.  While fuel flow, WF, is not
normally directly measured, it can be obtained from
another variable for this engine which will be shown.
Figure 4 shows a block diagram of the closed-loop
system.  Note that MMVFB and CVGFB are actuator
outputs, not engine outputs.  These two variables are
outputs of single input, single output servo loops.
These servo loops are higher bandwidth inner-loops
when compared to the engine outer loop variables.  In
this sense, they represent the system inputs, WFMA
and CVGMA. In the following examples, we will first
look at a classical model-based approach to analytical
redundancy using a model-based, nonlinear observer to
estimate the main metering valve feedback, MMVFB.
Then we will use the AANN to detect faults in the two
rotor speeds, and to provide estimates for the two rotor
speeds, XNL and XNH.

WFMA
CVGMA

XNL, XNH, ITT, T25, MMVFB, CVGFB

Turbofan
Engine
Model

Engine
Controller
(FADEC)

PLA

other engine outputs: P25, P3, T3, WF, DPBLD

ALT, DTAMB, XM

Figure 4  Schematic of Example Turbofan Model
Consisting of Separate Control and Engine Modules
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Schedules

and Engine

Main Loop

Engine

WFMA
PLA

ALT
DTAMB

XMN

XNL, XNH, ITT, T25

XNL
XNH
ITT
T25Servo

control #2

Fuel
valve

CVFFB1

FADEC 1 Plant

Servo
control #1

CVGMA
Geometry

MMVFB1

FADEC 2
non active

backup WFMA
CVGMA

MMVFB2

CVGFB2

Figure 5  Dual Redundant FADEC System Block Diagram

MMVFB Observer
MMVFB is the position feedback from the main

metering fuel valve.  Its purpose is to address the
nonlinearities within the actuator to prevent "hunting"
(oscillation) in the fuel control system.  In a system
with dual redundant FADEC’s as shown in Figure 5,
when the MMVFB sensor for FADEC #1 (MMVFB1)
fails then FADEC #2 must take over the control of the
engine assuming it still has a good MMVFB signal
(MMVFB2).  The MMVFB fault must be detected and
the controller must be switched in one time sample in
order to maintain the stability of the actuator loop
because of the high bandwidth nature of this loop.
Thus fast fault detection is critical to avoid a degraded
mode.

One of the issues with a dual redundant FADEC
system is that although differences between two
redundant measurements can be detected, there is
insufficient information to isolate a soft fault.  A soft
fault is a fault that does not cause a large, sudden
change in the measurements that would be outside of
the normal rate of change for that signal.  A drifting
measurement is an example of a soft fault.  A tie
breaking vote is required to isolate a soft fault and
analytical redundancy can be used to provide a third

vote in a system with dual FADEC’s.  The advantage of
having the third vote is that the sensor fault can be
detected and isolated.  This allows the valid sensor to
be recognized and used, and permits the engine to
operate normally without the need to switch to a
degraded mode.

In this example a nonlinear observer is used to
estimate the value of MMVFB.  This particular
observer uses two neural networks to estimate the core
rotor speed, XNH, which is used to provide steady state
correction to the MMVFB estimate as shown in Figure
6. This steady state correction prevents the
accumulation of an error in MMVFB that could build
up over time.  Note that this correction term has an
integral error term separate from the integral within the
fuel valve dynamic model.  A separate integral was
used to avoid having to retune the deadband used
within the fuel valve dynamic model (Figure 7).  Not
shown in Figure 6 is a range limit that was part of the
integrator limit and windup protection logic that was
included in this model. The dynamic behavior of
MMVFB is estimated using a first order model that was
identified from simulation data.  This first order,
nonlinear fuel valve dynamic model is shown in Figure
7 and contains a deadband nonlinearity.
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valve
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to WF
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Estimated
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+

MMVFB
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Figure 6  Block Diagram of MMVFB Nonlinear Observer with Neural Networks #1 and #2

WFMA
deadband

1
s

limited integral

k

gain

MMVFB

limit flag

Figure 7 Fuel Valve Dynamic Model

Note that the deadband is not symmetric.  It was tuned
using transient responses from the closed loop engine
simulation.  The model of the engine was treated as a
black box and the model source code was not available.
This nonlinear, first order model comprised the
dynamic response of the observer.  The steady state
correction path is based on the XNH estimate error.
The XNH estimate is obtained through two neural
networks which are described below.

Two single input, single output, neural networks
are used in the MMVFB observer.  Both networks are
simple functional approximations that could have been
accomplished with nonlinear curve fitting routines.
The advantage of using neural networks for functional
approximation is that the nonlinear functions used in
the curve fitting do not have to be selected other than
the nonlinearity used within the network node
activation functions which is typically sigmoidal or
some type of smooth "S" shaped function.  The first
network in Figure 6,  (N.N. #1) generates a steady state
estimate for fuel flow given MMVFB.  The second
network (N.N. #2) generates an estimate for corrected
rotor speed (XNHc) given corrected fuel flow, WFc.
Since no details were available regarding the control
system schedules, the closed loop model was used to

determine the extent of these nonlinearities.  Steady
state data was collected from the engine simulation for
1260 operating points.  These 1260 operating points
were obtained by varying PLA, DTAMB, ALT, and
XM.  PLA was varied over a range from 13-77.
Temperature was deviated ±20 degrees Fahrenheit from
standard conditions in increments of 10 degrees.  The
variations for altitude and Mach number are shown in
Figure 8.  These variations in altitude, ALT, and Mach
number, XM, are typical for a commercial turbofan
engine.  Figures 9 and 10 show the variations of WF,
MMVFB, and XNH for the 1260 steady state operating
points.  Note that fuel flow is almost a quadratic
function of the main metering valve position, which
one might expect for the choked flow of a valve with a
flow area that is proportional to the square of the valve
position.  The corrected rotor speed is plotted as a
function of the  corrected fuel flow in Figure 10 for the
1260 operating points.  Equation (5-8) gives the
relationships used to calculate the corrected terms.

theta T / T2 std= ,   Tstd = 518.7°F (5)

delta P / P2 std= ,  Pstd=14.67 psia (6)

XNH XNH / thetac = (7)

WF WF / delta / thetac = (8)

The curve shown in Figure 10 is very smooth and we
assume that this is by design.  There is probably a curve
like Figure 10 that is part of the engine control system
schedule.  For this program we did not have access to
the details of control system.  The fault detection
scheme was developed separately and the control
system was considered to be a “black box”.
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Figure 10  XNHc vs WFc (N.N. #2)

The original 1260 operating points were combined with
two perturbations around these 1260 operating points to
form a total set of 3780 steady state operating points
that were used to evaluate the steady state observer
performance.  Also, the dynamic performance of the

observer was evaluated using a PLA “SLAM” from
PLA=21 to 75 and back to 21.  This maneuver was
performed at 420 different operating points obtained
from the same variations in ALT, XM and DTAMB
used to generate the steady state estimates.  Table 1 lists
the worst case steady state and transient performance of
the estimator.  Note that worst case is conservatively
defined by the largest absolute percent error, where
percent error is defined in equation (10) as:

%error
"true" "estimate"

"true"
*100%=

− (10)

Table 1 also lists the worst case estimate error for WF
and XNH.  The absolute error corresponds to the point
where the worst case percent error was calculated.  It
can be observed that while a 20.2% dynamic error was
the largest percent error recorded in MMVFB, this
corresponds to an absolute error of only 0.009 out of a
full scale of 0.165, which is only 5% of full scale.

Table 1  Worst Case Estimate Errors
MMVFB
(inches)

WF
(lbm/hr)

XNH
(rpm)

Range 0.13 2240 5400
Absolute steady
state error

0.006 291 290

Percent steady
state error (%)

8.6 16.9 2.0

Absolute
dynamic error

0.00935 143 1338

percent  (%)
dynamic error

20.2 28.0 12.1

Note the steady state and dynamic errors are not calculated at
the same point.  Since the worst case percent error is based on
the ‘true’ error, it is possible for the absolute steady state error
to be larger than the absolute dynamic error in Table 1.

The steady state error for XNH is very good.  The
steady state error for MMVFB of 8.6% is higher than
we would have liked, although we believe this error can
be improved by modifying the training method.  One
approach would be to combine the two neural networks
into one network, and including P2 and T2 as inputs to
the network making this a new, three input, one output
network.  This would require the network to learn the
process of calculating the corrected values.  Another
approach would be to combine the two networks
through an intermediate calculation of corrected
variables and then to modify the training algorithm so
that both networks could be trained simultaneously.  In
the current approach these neural networks were trained
separately.  Both of these approaches would avoid the
problem of the accumulation of error when cascading
two neural networks.
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Figure 11 shows the response of MMVFB and
estimated MMVFB during the PLA response (PLA=21-
75-21) for the case where XM=0, ALT=0, DTAMB=0.
In this particular example the estimated MMVFB value
was fed back to the control system in place of the actual
value to demonstrate the closed-loop stability using the
estimated value of MMVFB.  This response is typical
of the estimator transient response.  An important use
of such an estimator would be to provide a third vote in
a dual redundant FADEC system so that if one of two
MMVFB measurements did fail, the MMVFB estimator
would be able to cast the tie breaking vote, allowing
engine operation to continue normally.  This would also
allow maintenance to be scheduled to address the faulty
sensor at an appropriate time, thus improving the
dispatchability of the aircraft.

The two neural networks used here were very
simple.  The first network is a two layer, 1-4-1 network
with a total of 4 nonlinear nodes (the output layer is
linear) and a total of 13 variables (8 weights, 5 biases).
Network #1 takes less than 10 lines of "C" code to

program.  The second neural network that estimates
corrected high rotor speed from corrected fuel flow is a
1-3-1 two layer network with a total of ten variables (6
weights, 4 biases).  The output layer is linear.  These
two networks are simple enough that it would be
possible to have online training to keep the steady state
estimates accurate.  Keeping the dynamic response
accurate would take more effort, but the problem is
small enough that it would be manageable with current
computer hardware.

AANN Sensor Validation of XNL, XNH

An Auto-Associative Neural Network is used to
recover from sensor failures in the two rotor speed
measurements, XNL and XNH, both of which are used
in the engine control loop.  Several different network
architectures were attempted and the bottle-neck layer
size was varied from 1 to 4.  The goal of changing the
network size was to minimize the total number of nodes
in the network while still obtaining accurate estimates.
The initial goal for this phase of training was to
estimate the measured values within 4% of the “true”
value.  Figure 12 shows the 7-10-4-10-7 auto-
associative neural network and the sensor variables
used as inputs to this network.  This network has 31
neurons, 220 weights and 31 biases to be adjusted
during the training process.  In Figure 12, the subscript
“c” stands for a corrected value.

Network Training

Besides the selection of the analytically redundant
sensors as previously described, network training plays
a critical role in the success of the sensor validation
scheme.  There are three steps in the network training.

DPBLD DPBLD

Estimates

Mapping

layer layer
De-mapping

Bottle-neck
layerXNLc

XNHc
P25c
P3c
T3c
WFc

XNLc
XNHc
P25c
P3c
T3c
WFc

7-10-4-10-7 Network
Figure 12  Auto-Associative Neural Network Schematic for Turbofan Engine Estimates

MMVFB (units)
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The first step is the generation of the training data
from data collected from the previously described 1260
operating points defined by the variations in ALT and
XM (in Figure 8) and PLA and DTAMB.  Each
operating point contains a corresponding set of sensor
values containing the steady state measurement of
[XNL, XNH, P25, P3, T3, WF, DPBLD].

The second step is the actual training.  The goal is
to train the Auto-Associative Neural Network so that:
1)  the network output vector matches the input vector

at each operating point; and
2)  the network output vector shall be insensitive to a

single sensor deviation from its “normal” reading.
In this study, a back-propagation algorithm is used to
adjust the weights of the network so that the network
output will return the desired sensor measurements for
both the normal data set and the simulated failed sensor
data set.  Because the nature of the desired neural
network is not a simple functional map, it is necessary
to modify the training procedures in order to achieve
the best results.  The following factors were used for
the neural network training:
1)  Normalization of the sensor data: All the sensor

data are normalized and scaled to have a value
between -1 and +1.  This is to assure that all
sensors will have approximately the same
sensitivities.

2)  Training with normal data set: The network is first
trained with the normal data set to quickly train the
network to perform under the normal conditions.
By normal we mean, “no fault”.

3)  Training with simulated failed sensor data set:  A
sensor failure is simulated by adding a random
number to a selected sensor reading in the normal
data set.  There are two methods of training using
the failed sensor data.  The first method generated
a complete training set with only one failed sensor
on each measurement set.  It was found that this
type of training tended to be slow and sometimes it
was difficult to achieve the desired results.  The
second training method varied which sensor was
failed within the training set.  In this case, a sensor
was randomly selected and random biases were
added to the sensor reading.  The goal of training
with data containing faults is to adjust the weights
so that the neural network will minimize the effect
of the bad sensor readings by using other sensors to
provide a good estimate.  In this training, it was
also found to be helpful to freeze the first layer
weights connected to the node of the bad sensor
during the back-propagation weight adjustment.
This prevented the failed sensor from being totally

ignored, but required a modification to the standard
back propagation scheme.

4)  Step size and momentum term:  It was found that
the momentum term in the training does not
improve the training result because of the batch
training process.  The step size selection depends
on the size of the training batch.  In this case, it
was selected to be in the order of 1.0*10-5 because
of the large batch size of the training set.

AANN FDIA Results

The Auto-Associative Neural Network was
combined with simple error threshold logic to construct
a fault detection, isolation and accommodation system.
The focus here is on the neural network estimates and
not on the threshold logic.  A comparison was made
between the AANN input and output.  If the output
exceeded a prescribed level, a fault was said to have
occurred.  One at a time faults are easily detected and
isolated because the neural network provides a good
estimate of the actual sensor value.  While the detection
and thresholding logic play an important role in the
resulting transient response during the switch from a
faulty sensor to an estimated value, in the following we
focus primarily on the estimate accuracy of the auto-
associative neural network. We will show a simulated
slow soft fault, then a fast soft fault, and finally we will
consider a hard fault.

In Figure 13, the slow soft fault was simulated for
the low rotor speed, XNL, by adding a bias to the
sensed value of XNL.  The negative bias value was a
function of time.  Note that because the control system
was trying to regulate XNL, the sensed value of XNL
remained constant and the actual value increased.  The
actual value of XNL increased because the controller
was increasing the fuel flow to compensate for the
negative ramp bias in the sensed value of XNL to hold
it constant.  Once the measured and estimated values of
XNL differed by more than the preset threshold value
of 1000 rpm, the measured value for XNL was replaced
by the value of XNL estimated by the AANN.  A step
response can be observed starting at time equal to 15
seconds when the controller began to regulate XNL
based on the XNL estimate.  The actual, measured, and
estimated value of XNL were plotted in Figure 13
along with the XNL fault detection flag which shows
when the fault was detected by exceeding the threshold
value.  Note in Figure 13 at a time of 30 seconds that
there remains a bias or offset in the XNL estimate.
This is due to the AANN estimation error at this
particular operating point.  This value is approximately
100 rpm at a nominal value of 7000 rpm.
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Figure 13  Simulated XNL Slow Soft Fault by
Adding a Ramp Bias Value to XNL_measured
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Figure 14  Simulated XNL Fast Soft Fault by
Adding a Ramp Bias Value to XNL_measured

The fast soft fault was simulated by adding a fast
changing ramp value to the measured value of XNL.
The response during this transient is shown in Figure
14 and it is similar to the response shown in Figure 13,
except faster and in the opposite direction.  The
threshold value for this particular example was set to
500 rpm.  It can bee seen the difference between the
measured and estimated values of XNL exceeds the 500
rpm error threshold at approximately 14 seconds.  Also
note that the bias started at time equal to ten seconds.
Between 10 and 14 seconds the control system is trying
to compensate for the ramp increase disturbance in the
measured value of XNL by decreasing the fuel flow
(see the bottom plot in Figure 14). The controller
responses results in a constant offset or bias which is
the typical response for a type I control system [9].  As
before, once the fault threshold value was exceeded, the
control system went through an XNL step response and
then continues to regulate on the estimated value of
XNL.

The hard fault was simulated for the high rotor
speed by adding a large bias term to the measured value
of XNH.  In Figure 15 the bias value was added at ten
seconds. The fault was detected immediately because
the fault threshold for XNH was exceeded.  The control
system switched to the estimated value of XNH.  The
control system handled the transient as it adjusted to the
estimated value of XNH.  We do not know the control
law, but we believe that the transient in Figure 15 is
different from the responses shown in Figure 13 and 14
for XNL because of how XNH is used in the control
system.  The controller recovered in about two seconds.
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Figure 15  Simulated XNH Hard Fault by
Adding a Large Bias Value to XNH_measured
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Comments

The results presented here indicate that neural
networks can play a role in sensor fault detection,
isolation, and accommodation.  Using neural networks
for nonlinear functional approximation is reasonably
straight forward.  The results of the auto-associative
neural network presented here were good.  The AANN
was able to detect faults in XNL and XNH using a
simple thresholding scheme and the estimated value
could be used within the closed loop control system.
However, training the network with the fault modified
training set was laborious and time consuming.  The
network size was not huge, but when combined with
the fault training set the training times became
significant.  Training times in excess of 24 hours on a
Pentium PC platform were not uncommon.  The
network had 251 weights and biases to adjust.  The
fault training set consisted of 1260*(#
sensors)*(#simulated faults) training cases.  The
training times were substantial partially because the
1260 operating points covered a wide operating range.
Several different auto-associative neural networks were
designed.  They were of different structures and used
different variables.  The training of the neural network
was delicate and sensitive to the learning rate and
required an experienced hand.  In most cases the
weights obtained for a given neural network structure
were not unique, i.e., different sets of weights produce
similar results.

Summary

We have presented two approaches to the sensor
validation problem.  Two different types of neural
networks were used: functional approximation and
auto-associative neural networks.  The functional
approximation neural networks were used as part of a
nonlinear, model-based approach to analytical
redundancy.  The auto-associative neural network was
used as part of an FDIA scheme that acted like a fault
filter and only required the addition of some
thresholding logic.  The results that were presented
show that neural networks can play a role in fault
detection.  We believe more work is required to obtain
a time-efficient training method for the auto-associative
neural network approach.
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The Matlab Neural Network Toolbox from the
MathWorks, Inc. (www.mathworks.com) was used in
the training of the neural networks presented in this
paper.  The training routines provided by MathWorks
were extended to four layers networks to perform the
training of the auto-associative neural networks.
Also, all simulations were performed by interfacing
the FORTRAN engine model to the MathWork’s
Simulink simulation environment.
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